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Abstract

In this paper, we prove a strong convergence theorem for relatively nonexpansive mappings in a
Banach space by using the hybrid method in mathematical programming. Using this result, we also
discuss the problem of strong convergence concerning nonexpansive mappings in a Hilbert space and
maximal monotone operators in a Banach space.
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1. Introduction

LetE be a smooth Banach space andHétbe the dual oE. The functionp: E x E — R
is defined by

(v, x) = IylI2 = 20y, Jx) + ||x|12

for all x,y € E, whereJ is the normalized duality mapping froEto £*. Let C be a
closed convex subset &, and lefT be a mapping fron€ into itself. We denote by’ (T)
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the set of fixed points of. A point p in C is said to be an asymptotic fixed point of

T [13] if C contains a sequende,} which converges weakly tp such that the strong
lim,_ o (x, — Tx,) = 0. The set of asymptotic fixed points Divill be denoted byﬁ"(T).

A mappingT from C into itself is called nonexpansive |fTx — Ty| <|lx — y| for all

x,y € C and relatively nonexpansive [3—5]ﬁ(T) = F(T) and¢(p, Tx) < p(p, x) for

allx € Candp € F(T). The asymptotic behavior of arelatively nonexpansive mapping was
studied in [3-5]. On the other hand, Nakajo and Takahashi [9] obtained strong convergence
theorems for nonexpansive mappings in a Hilbert space. In particular, they studied the strong
convergence of the sequenfog} generated by

xo=x €C,

Yn = OuXp + (1 — 04) Sxp,
Ch={zeC:llz—yl<llz—xl},
O0,=1{z€C:{x,—2z,x—x,)20},
Xp+1 = Pc,ng,x.n = 0,12,...,

where{a,} C [0, 1], Sis a nonexpansive mapping fro@into itself andPc,ng, is the
metric projection fronC ontoC, N Q,,.

Motivated by Nakajo and Takahadi], our purpose in this paper is to prove a strong
convergence theorem for relatively nonexpansive mappings in a Banach space. Using this
result, we also discuss the problem of strong convergence concerning nonexpansive map-
pings in a Hilbert space and maximal monotone operators in a Banach space.

2. Preliminaries

Let E be a real Banach space with nojim|| and letE* be the dual oE. Denote by(-, -)
the duality product. The normalized duality mappihiyom E to E* is defined by

Jx ={x* € E*: (x,x*) = ||Ix]|? = |Ix*|1%}

for x € E. When{x,} is a sequence ik, we denote strong convergence{of} tox € E
by x, — x and weak convergence lyy — x.

A Banach spack is said to be strictly convex lf’% | < 1forallx,y e E with ||x| =
Iyl = 1 andx # y. Itis also said to be uniformly convex if lij, » ||x, — y.|| = O for
any two sequences, }, {y,} in E such that|x,|| = [ly,|l = 1 and lim, o |25 = 1.
LetU = {x € E : ||x|| = 1} be the unit sphere d&. Then the Banach spaEsds said to be

smooth provided

. x+tyl| —|[x
lim Il yiE= x|l
t—0 1

exists for eache, y € U. It is also said to be uniformly smooth if the limit is attained
uniformly for x, y € U. Itis well known that ifE is smooth, then the duality mappidg
is single valued. It is also known thatHfis uniformly smooth, thed is uniformly norm-
to-norm continuous on each bounded subsé&.d@ome properties of the duality mapping
have been given if6,12,16,17]. A Banach spaé&gs said to have the Kadec—Klee property
if a sequencédx,} of E satisfying thaty, — x € E and|x,|| — ||x|, thenx, — x.Itis
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known that ifE is uniformly convex, theit has the Kadec—Klee property; 46¢16,17] for
more details. LeE be a smooth Banach space. The functiorf x E — R is defined by

Py, x) = Iyl = 20y, Jx) + [Ix])?
for x, y € E. Itis obvious from the definition of the functiaop that

Uyl =D < Py, ) < Ayl + lIxID? (2.2)
forallx,y € E.
Remark 2.1. If E is a strictly convex and smooth Banach space, thenxfor € E,
¢(y,x) = 0 if and only if x = y. It is sufficient to show that ifp(y, x) = 0 then
x = y. From (2.1), we havéix|| = | y|l. This implies (y, Jx) = |y||? = ||Jx||2. From the

definition ofJ, we have Jx= Jy. Sincel is one-to-one, we have = y; see [6,16,17] for
more details.

Recently, Kamimura and Takahashi [7] proved the following result. This plays an impor-
tant role in the proof of the main theorem.

Proposition 2.1(Kamimura and Takahaslir]). Let E be a uniformly convex and smooth
Banach space and lév,}, {z,} be two sequences of E.¢(y,, z,) — 0 and either{y,}
or {z,} is boundedtheny, — z, — O.

Let C be a nonempty closed convex subsetofSuppose thaE is reflexive, strictly
convex and smooth. Then, for anye E, there exists a poinip € C such that

¢(x0, x) = min ¢(y, x).
yeC

The mappingPc : E — C defined byPcx = xgis called the generalized projectifin2,7].
The following are well-known results. For example, see [1,2,7]

Proposition 2.2 (Alber[1], Alber and ReicH2], Kamimura and TakahasHir]). LetC be
a nonempty closed convex subset of a smooth Banach spacexesafdThen,xg = Pcx
if and only if

(xo—y,Jx — Jx0) =0

fory e C.

Proposition 2.3(Alber[1], Alber and ReicH2], Kamimura and TakahasHi’]). LetE be
a reflexive, strictly convex and smooth Banach spbete be a nonempty closed convex
subset of E and let € E. Then

¢y, Pcx) + ¢p(Pcx, x) < p(y, x)
forally € C.

Concerning the set of fixed points of a relatively nonexpansive mapping, we can prove
the following result.
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Proposition 2.4. Let E be a strictly convex and smooth Banach spsteC be a closed
convex subset of Bnd let T be a relatively nonexpansive mapping from C into itSekn
F(T) is closed and convex.

Proof. We first show that'(T) is closed. Lefx,} be a sequence @& (T) such thaty, —
X € C. From the definition of,

d)(xm T)e) < ¢(Xm )e)

for eachn € N. This implies,
¢, Tx) = lim ¢(x,, TX)< lim ¢(xp,, X) = ¢p(x,x) =0.
n—oo n— o0

Therefore we obtait = Tx. So, we have € F(T). Next, we show that'(T') is convex.
Forx,y € F(T) andr € (0,1), putz = tx + (1 —1r)y. It is sufficient to showl'z = z. In
fact, we have

¢z, T2) = ||z|? = 2(z, I Tz) + | Tz))?
= llzl® = 2(tx + (L — 1)y, JTz) + || Tz|1?
= llzl® = 2t(x, JTz) — 2(L — t){y, JTz) + || Tz||?
= lzlI> + t$p(x, T2) + (L — (v, Tz) — tllx[|? = A = )| y|I?
<zl +td(x,2) + L= Dy, 2) — tllxl? = L= D)ly]I?
= llzlI® = 2(tx + (L — 1)y, J2) + l|zlI®
= llzlI> = 2(z, J2) + Iz|? = 0.

This implies z=Tz. O

3. Main result

Now, we can prove a strong convergence theorem for relatively nonexpansive mappings
in a Banach space by using the hybrid method in mathematical programming.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach spate&;
be a nonempty closed convex subset ofeET be a relatively nonexpansive mapping
from C into itself,and let{z,} be a sequence of real numbers such &tx, < 1 and
limsup,_, ., o» < 1. Suppose thafx,} is given by

xo=x€C,

Yn = Jﬁl(“nlxn + (1= o) Txy),
H,={zeC: ¢(Z, YH)<¢(Z, X))}
W,={zeC:(x, —z,Jx — Jx,) =0},
Xp41 = Pu,rw,x,n=0,1,2,...,

where J is the duality mapping on E.F(T) is nonemptythen{x, } converges strongly to
Pr(ryx, wherePp(ry is the generalized projection from C onkqT).



S. Matsushita, W. Takahashi / Journal of Approximation Theory 134 (2005) 257—-266 261

Proof. We first show thatf, andW,, are closed and convex for eache N U {0}. From
the definition ofH,, andW,,, itis obvious thatH,, is closed and¥,, is closed and convex for
eachn € N U {0}. We show thatH,, is convex. Sinceb(z, y,) < ¢(z, x,) is equivalent to

2(z, Jxn — Jyn) + llynll® = %112 <0,

it follows that H,, is convex.
Next, we show that# (7)) c H, N W, for eachn € NU {0}. Letu € F(T) and let
n € NU{0}. Then from

G, yn) = pu, I o Jxy + (1= 0,) I Txy))

= |lull® = 2(u, o Jxn + (L — 02) I Txn) + |[0tn 20 + (L — 02) I T xn ||?

< Null® = 200, u, Txn) — 201 — o), TTxn) + 0t |12 117
+(1 = o) | Txy |12

= oy (ull® = 20u, Jx) + %4113 + (L — o) (e ® = 20, T Tx)
T x4 112)

= O‘n(b(uv Xn) + (1 - O‘n)d)(uv Txn)

< ot,,d)(u, xp) + (1— OC,,)(ZS(M, Xn)

= qb(u,x,,),

we haveu € H,. Therefore we obtain
F(T) C H,

for eachn € N U {0}. On the other hand, it is clear th&t{(7) Cc Ho N Wp. Suppose that
F(T) C Hy N W for somek € N. There exists an element+1 € Hy N W such that
Xk+1 = Pm,nw,x. From Propositior2.2, there holds

(X1 — 2, Jx — Txp41) 20

for eachz € Hy N Wy. SinceF(T) C Hy N Wy, we have (¥+1 — u, Jx — Jxi41) >0 for
everyu € F(T) and hencd' (T) C Wy,1. Therefore we havé' (T) C Hyy+1 N Wi41. This
implies that{x,} is well defined. It follows from the definition d#,, and Propositior2.2
thatx, = Pw,x. Usingx, = Pw,x and Proposition 2.3, we have

O (xn, x) = G(Pw,x, x) <P(u, x) — P(u, x,) < P(u, x)

foreachu € F(T) c W, foreachn € N U {0}. Thereforeg(x,, x) is bounded. Moreover,
from (2.1), we have thdty, } is bounded.
Sincex,+1 = P,nw,x € W, and Proposition 2.3, we have

¢(xnv .X) < ¢(xn+1s )C)

for eachn € N U {0}. Therefore{¢(x,, x)} is nondecreasing. So there exists the limit of
¢(x,, x). From Propositior2.3, we have
¢(xﬂ+1f )Cn) = q')(-xl’l-i-lv PWn-x) <¢(xﬂ+1s )C) - (I’)(PWn-xv -x)
== (b(xn-i-l, x) - Qb(xnv )C)
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foreactm € NU{0}. Thisimpliesthatlim_ .. ¢(x,+1.x,) = 0.Sincex,+1 = Py,nw,x €
H,, from the definition ofH,,, we also have

¢(xn+la Yn) < ¢(xll+1a Xn)

for eachn € N U {0}. Tendingn — oo, we have lim_ o ¢(x,+1, y,) = 0. Using
Proposition2.1, we obtain

lim ||xp+1 — yull = lim x40 — 2,0l = 0.
n—o0 n—o0
SinceJ is uniformly norm-to-norm continuous on bounded sets, we have
lim [[Jxpe1 — Jyull = lim |[Jx,41 — Jxu|l = 0. (3.1)
n— 00 n—o00
On the other hand, we have, for eacke N U {0},

IJxp+1 = Jynll = 1V xn41 — @ J X0 + (L= 000) I T X)) ||
= [loty (Jxp41 — Jxn) + (L — 04) (Jxpg1 — ST x) ||
= |1 — o) (Jxpt1 — JTxp) — 0 (Jxp — Jxp41) ||
Z QL —o)Jxnrr — I T x|l — o llJxp — J X1

and hence
[Jxpr1— IT x|l < 1—a M xn+1 = Iynll + ot ll S0 — T xp421D)
- YUn
< I xn+1 = Iynll + 1T x0 — Txp1alD).

1— oy
From (3.1) and lim sup, ., , < 1, we obtain

lim | Jxys1 — JTxy] = O.
n—0oo

SinceJ ~1is also uniformly norm-to-norm continuous on bounded sets, we obtain
im xp41— Txall = lim 77 (I xuq2) — JH I Txn) | = 0.
n—o00 n—o0

From

lxn — Txpll = lxn — Xp41 + Xpp1 — Txgl|
< lxn — Xl + lxpg1 — Txnll,

we have lim— o [lx, — Tx,|| = 0. Therefore, if{x,, } is a subsequence ¢f,} such that
Xy, — % € C,thent € F(T) = F(T).

Finally, we show that, — Pg(ryx. Let {x,,} be a subsequence ¢f,} such that
Xp, — X € F(T) andw = Pp(ryx. For anyn € N, from x,41 = Py,nw,x andw €
F(T) c H, N W,, we havep(x,+1, x) < d(w, x). On the other hand, from weakly lower
semicontinuity of the norm, we have

D@, x) = |IX11% — 2(%, Jx) + [Ix||?
< iminf ([l 12 = 2(xn,, Jx) + [1x]1%)
k— 00
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= Ilm |nf d)(‘x”k’ x)
k— 00

< limsup ¢(xy,, x)

k— o0
< d(w, x).

From the definition ofPx(7yx, we obtaint = w and hence lin, o ¢(xp,, x) = Pp(w, x).
So, we have

lim x| = llwll.
k— 00

Using the Kadec—Klee property &, we obtain thafx,,} converges strongly t®gr)x.
Since{x,, } is an arbitrary weakly convergent sequencéxqf, we can conclude thdi,, }
converges strongly t®rryx. O

4. Applications

In this section, we discuss the problem of strong convergence concerning nonexpansive
mappings in a Hilbert space and maximal monotone operators in a Banach space. Using
Theorem3.1, we first obtain the result of [9].

Theorem 4.1(Nakajo and Takahashi[9])Let C be a nonempty closed convex subset of a
Hilbert space H,and let T be a nonexpansive mapping of C into itself such £dt) is
nonemptySuppose thatx, } is given by

xo=x €C,

Yn = OnXp + (1 — o) Txp,
Ch={zeC:lz—ml<llz—xal},
On=1{z€C:{xy—2z,x —x,) =0},
Xpt1 = Pc,ng,x.n = 0,12,...,

where{a,} C [0, a) for someu € [0, 1) and P¢,ng, is the metric projection from C onto
Cn N Qn. Then{x,} converges strongly t®¢r)x, where Pr(ry is the metric projection
from C ontoF (T).

Proof. Itis sufficient to prove that i is nonexpansive, thehis relatively nonexpansive.
It is obvious thatF (T) C F(T).fu € F(T), then there existér,} C C such that, — u
andx, — Tx, — 0. SinceT is nonexpansivel is demiclosed. So, we have= Tu. This
implies F(T) = F(T). Further, in a Hilbert spadd, we know that

d(x,y) = Ix — y|I?

foreveryx,y € H.So,|Tx —Ty| <|lx —y| isequivalenttap(Tx, Ty) < ¢(x, y). There-
fore, T is relatively nonexpansive. Using Theore®il, we obtain the desired
result. O

Let A be a multivalued operator frofa to E* with domainD(A) = {z € E : Az #
¢} and rangeR(A) = U{Az : z € D(A)}. An operatorA is said to be monotone if
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(x1 — x2, y1 — y2) >0 for eachx; € D(A) andy; € Tx;,i = 1,2. A monotone operatdk

is said to be maximal if its grapi(A) = {(x, y) : y € Ax}is not properly contained in the
graph of any other monotone operator. We know thAtif a maximal monotone operator,
thenA—10 is closed and convex. The following result is also well-known.

Theorem 4.2(Rockafellarf14]). Let E be a reflexivestrictly convex and smooth
Banach space and let A be a monotone operator from E*toThen A is maximal if
and only ifR(J +rA) = E* forall r > 0.

Let E be a reflexive, strictly convex and smooth Banach space, addeta maximal
monotone operator frora to E*. Using Theoren#.2 and strict convexity o, we obtain
that for everyr > 0 andx € E, there exists a unique- € D(A) such that

Jx € Jx, +rAx,.

If J.x = x,, then we can define a single valued mappipg E — D(A) by J, = (J +

rA)~1J and such al, is called the resolvent o&. We know thatd—10 = F(J,) for all

r > 0; see[16,17] for more details. Using Theorem 3.1, we can consider the problem of
strong convergence concerning maximal monotone operators in a Banach space. Such a
problem has been also studied in [7—11,13,15].

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space, let A be
a maximal monotone operator from E &, let J. be a resolvent of Ayherer > 0 and let

{o,} be a sequence of real numbers such thaty, < 1andlimsup,_, ., o, < 1.Suppose
that{x,} is given by

xo=x €k,

Yn = J_l(“njxn + A=) Jrxp),

Hy ={z € E: ¢z, yu) <Pz, xn)},
Wp={z€eE:{xy—z,Jx—Jx,) 20},
Xp41 = Pu,ow,x,n=0,1,2,...,

where J is the duality mapping on E.A~10 is nonemptythen{x, } converges strongly to
P,-10x WhereP,_1, is the generalized projection from E onto 10.

Proof. We first show thaf'(J,) ¢ A~10. Letp € F(J,). Then, there exist&,} C E such
thatz, — p and lim,_, o (z, — J;z,) = 0. Sinced is uniformly norm-to-norm continuous
on bounded sets, we obtain

1
;(Jzn —JJrzp) — 0.

It follows from %(Jzn — JJyzy) € AJrz, and the monotonicity of\ that
(w— Jrzp, w* — %(Jz,1 —JJrzn)) 20
forall w € D(A) andw* € Aw. Lettingn — oo, we have

(w—p,w*)>0
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forallw € D(A) andw* € Aw. Therefore from the maximality &, we obtairp € A~10.

On the other hand, we know th&tJ,) = A~10 andF(J,) c F(J,), thereforeA=10 =
F(J,) = F(J,). Next we show thatl, is a relatively nonexpansive mapping with respect
to A~10. Letw € E andp € A~10. From the monotonicity oA, we have

d(p. Jrw) = |pI? = 2(p, JJ,w) + | J,w|?
= IplI*+ 2(p, Jw — T Jyw — Jw) + || Jyw|?
= lIpl2+2(p, Jw — JJyw) — 2{p, Jw) + ||/, w]?
= pll® = 2(yw — p — Jyw, Jw — JJ,w) — 2(p, Jw) + || J,w|?
= pll® = 2(yw — p, Jw — JJ,w)
20w, Jw — JJow) — 2(p, Jw) + || J,w]?
= Ipl®> = 2r(Jyw — p, 3(Jw — J J,w))
+2(Jrw, Jw — JJow) — 2(p, Jw) + | Jrw]|?
< Npl? + 20w, Jw — JJw) — 2(p, Jw) + [ Jyw|?
= IpI? = 2(p, Jw) + [wl? = I, w|? + 2(J,w, Jw) — [w]?
= 4)([7’ w) — d)(erv w)
< ¢(p, w).

This implies thatJ, is a relatively nonexpansive mapping. Using Theoi@mh, we can
conclude thafx,} converges strongly t®,-1ox. [
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