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Abstract

In this paper, we prove a strong convergence theorem for relatively nonexpansive mappings in a
Banach space by using the hybrid method in mathematical programming. Using this result, we also
discuss the problem of strong convergence concerning nonexpansive mappings in a Hilbert space and
maximal monotone operators in a Banach space.
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1. Introduction

LetEbe a smooth Banach space and letE∗ be the dual ofE. The function� :E×E → R
is defined by

�(y, x) = ‖y‖2 − 2〈y, Jx〉 + ‖x‖2

for all x, y ∈ E, whereJ is the normalized duality mapping fromE to E∗. Let C be a
closed convex subset ofE, and letT be a mapping fromC into itself. We denote byF(T )
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the set of fixed points ofT. A point p in C is said to be an asymptotic fixed point of
T [13] if C contains a sequence{xn} which converges weakly top such that the strong
limn→∞ (xn− T xn) = 0. The set of asymptotic fixed points ofTwill be denoted byF̂ (T ).
A mappingT from C into itself is called nonexpansive if‖T x − Ty‖�‖x − y‖ for all
x, y ∈ C and relatively nonexpansive [3–5] if̂F(T ) = F(T ) and�(p, T x)��(p, x) for
all x ∈ C andp ∈ F(T ). Theasymptotic behavior of a relatively nonexpansivemappingwas
studied in [3–5]. On the other hand, Nakajo and Takahashi [9] obtained strong convergence
theorems for nonexpansivemappings in aHilbert space. In particular, they studied the strong
convergence of the sequence{xn} generated by




x0 = x ∈ C,
yn = �nxn + (1− �n)Sxn,
Cn = {z ∈ C : ‖z− yn‖�‖z− xn‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉�0},
xn+1 = PCn∩Qnx, n = 0, 1,2, . . . ,

where{�n} ⊂ [0, 1], S is a nonexpansive mapping fromC into itself andPCn∩Qn is the
metric projection fromC ontoCn ∩Qn.
Motivated by Nakajo and Takahashi[9], our purpose in this paper is to prove a strong

convergence theorem for relatively nonexpansive mappings in a Banach space. Using this
result, we also discuss the problem of strong convergence concerning nonexpansive map-
pings in a Hilbert space and maximal monotone operators in a Banach space.

2. Preliminaries

LetE be a real Banach space with norm‖ · ‖ and letE∗ be the dual ofE. Denote by〈·, ·〉
the duality product. The normalized duality mappingJ fromE toE∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2}
for x ∈ E. When{xn} is a sequence inE, we denote strong convergence of{xn} to x ∈ E
by xn → x and weak convergence byxn ⇀ x.
A Banach spaceE is said to be strictly convex if‖ x+y2 ‖ < 1 for all x, y ∈ E with ‖x‖ =

‖y‖ = 1 andx �= y. It is also said to be uniformly convex if limn→∞ ‖xn − yn‖ = 0 for
any two sequences{xn}, {yn} in E such that‖xn‖ = ‖yn‖ = 1 and limn→∞ ‖ xn+yn2 ‖ = 1.
LetU = {x ∈ E : ‖x‖ = 1} be the unit sphere ofE. Then the Banach spaceE is said to be
smooth provided

lim
t→0

‖x + ty‖ − ‖x‖
t

exists for eachx, y ∈ U . It is also said to be uniformly smooth if the limit is attained
uniformly for x, y ∈ U . It is well known that ifE is smooth, then the duality mappingJ
is single valued. It is also known that ifE is uniformly smooth, thenJ is uniformly norm-
to-norm continuous on each bounded subset ofE. Some properties of the duality mapping
have been given in[6,12,16,17]. A Banach spaceE is said to have the Kadec–Klee property
if a sequence{xn} of E satisfying thatxn ⇀ x ∈ E and‖xn‖ → ‖x‖, thenxn → x. It is
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known that ifE is uniformly convex, thenEhas the Kadec–Klee property; see[6,16,17] for
more details. LetE be a smooth Banach space. The function� :E ×E → R is defined by

�(y, x) = ‖y‖2 − 2〈y, Jx〉 + ‖x‖2
for x, y ∈ E. It is obvious from the definition of the function� that

(‖y‖ − ‖x‖)2��(y, x)�(‖y‖ + ‖x‖)2 (2.1)

for all x, y ∈ E.
Remark 2.1. If E is a strictly convex and smooth Banach space, then forx, y ∈ E,
�(y, x) = 0 if and only if x = y. It is sufficient to show that if�(y, x) = 0 then
x = y. From (2.1), we have‖x‖ = ‖y‖. This implies 〈y, Jx〉 = ‖y‖2 = ‖Jx‖2. From the
definition ofJ, we have Jx= Jy. SinceJ is one-to-one, we havex = y; see [6,16,17] for
more details.

Recently, Kamimura and Takahashi [7] proved the following result. This plays an impor-
tant role in the proof of the main theorem.

Proposition 2.1(Kamimura and Takahashi[7]). Let E be a uniformly convex and smooth
Banach space and let{yn}, {zn} be two sequences of E.If �(yn, zn) → 0 and either{yn}
or {zn} is bounded,thenyn − zn → 0.

Let C be a nonempty closed convex subset ofE. Suppose thatE is reflexive, strictly
convex and smooth. Then, for anyx ∈ E, there exists a pointx0 ∈ C such that

�(x0, x) = min
y∈C �(y, x).

ThemappingPC :E → C defined byPCx = x0 is called the generalized projection[1,2,7].
The following are well-known results. For example, see [1,2,7]

Proposition 2.2(Alber [1], Alber and Reich[2], Kamimura and Takahashi[7]). Let C be
a nonempty closed convex subset of a smooth Banach space E andx ∈ E.Then,x0 = PCx
if and only if

〈x0 − y, Jx − Jx0〉�0

for y ∈ C.
Proposition 2.3(Alber [1], Alber and Reich[2], Kamimura and Takahashi[7]). Let E be
a reflexive, strictly convex and smooth Banach space,let C be a nonempty closed convex
subset of E and letx ∈ E. Then

�(y, PCx)+ �(PCx, x)��(y, x)

for all y ∈ C.
Concerning the set of fixed points of a relatively nonexpansive mapping, we can prove

the following result.



260 S. Matsushita, W. Takahashi / Journal of Approximation Theory 134 (2005) 257–266

Proposition 2.4. Let E be a strictly convex and smooth Banach space,let C be a closed
convex subset of E,and let T be a relatively nonexpansive mapping from C into itself.Then
F(T ) is closed and convex.

Proof. We first show thatF(T ) is closed. Let{xn} be a sequence ofF(T ) such thatxn →
x̂ ∈ C. From the definition ofT,

�(xn, T x̂)��(xn, x̂)

for eachn ∈ N. This implies,

�(x̂, T x̂) = lim
n→∞ �(xn, T x̂)� lim

n→∞ �(xn, x̂) = �(x̂, x̂) = 0.

Therefore we obtain̂x = T x̂. So, we havêx ∈ F(T ). Next, we show thatF(T ) is convex.
Forx, y ∈ F(T ) andt ∈ (0, 1), putz = tx + (1− t)y. It is sufficient to showT z = z. In
fact, we have

�(z, T z) = ‖z‖2 − 2〈z, JT z〉 + ‖T z‖2
= ‖z‖2 − 2〈tx + (1− t)y, JT z〉 + ‖T z‖2
= ‖z‖2 − 2t〈x, JT z〉 − 2(1− t)〈y, JT z〉 + ‖T z‖2
= ‖z‖2 + t�(x, T z)+ (1− t)�(y, T z)− t‖x‖2 − (1− t)‖y‖2
� ‖z‖2 + t�(x, z)+ (1− t)�(y, z)− t‖x‖2 − (1− t)‖y‖2
= ‖z‖2 − 2〈tx + (1− t)y, J z〉 + ‖z‖2
= ‖z‖2 − 2〈z, J z〉 + ‖z‖2 = 0.

This implies z= T z. �

3. Main result

Now, we can prove a strong convergence theorem for relatively nonexpansive mappings
in a Banach space by using the hybrid method in mathematical programming.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach space,let C
be a nonempty closed convex subset of E,let T be a relatively nonexpansive mapping
from C into itself,and let{�n} be a sequence of real numbers such that0��n < 1 and
lim supn→∞ �n < 1.Suppose that{xn} is given by




x0 = x ∈ C,
yn = J−1(�nJxn + (1− �n)JT xn),
Hn = {z ∈ C : �(z, yn)��(z, xn)},
Wn = {z ∈ C : 〈xn − z, Jx − Jxn〉�0},
xn+1 = PHn∩Wnx, n = 0, 1,2, . . . ,

where J is the duality mapping on E.If F(T ) is nonempty,then{xn} converges strongly to
PF(T )x, wherePF(T ) is the generalized projection from C ontoF(T ).
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Proof. We first show thatHn andWn are closed and convex for eachn ∈ N ∪ {0}. From
the definition ofHn andWn, it is obvious thatHn is closed andWn is closed and convex for
eachn ∈ N ∪ {0}. We show thatHn is convex. Since�(z, yn)��(z, xn) is equivalent to

2〈z, Jxn − Jyn〉 + ‖yn‖2 − ‖xn‖2�0,

it follows thatHn is convex.
Next, we show thatF(T ) ⊂ Hn ∩ Wn for eachn ∈ N ∪ {0}. Let u ∈ F(T ) and let

n ∈ N ∪ {0}. Then from

�(u, yn) = �(u, J−1(�nJxn + (1− �n)JT xn))
= ‖u‖2 − 2〈u, �nJxn + (1− �n)JT xn〉 + ‖�nJxn + (1− �n)JT xn‖2
� ‖u‖2 − 2�n〈u, Jxn〉 − 2(1− �n)〈u, JT xn〉 + �n‖xn‖2

+(1− �n)‖T xn‖2
= �n(‖u‖2 − 2〈u, Jxn〉 + ‖xn‖2)+ (1− �n)(‖u‖2 − 2〈u, JT xn〉

+‖T xn‖2)
= �n�(u, xn)+ (1− �n)�(u, T xn)
� �n�(u, xn)+ (1− �n)�(u, xn)
= �(u, xn),

we haveu ∈ Hn. Therefore we obtain

F(T ) ⊂ Hn
for eachn ∈ N ∪ {0}. On the other hand, it is clear thatF(T ) ⊂ H0 ∩W0. Suppose that
F(T ) ⊂ Hk ∩ Wk for somek ∈ N. There exists an elementxk+1 ∈ Hk ∩ Wk such that
xk+1 = PHk∩Wkx. From Proposition2.2, there holds

〈xk+1 − z, Jx − Jxk+1〉�0

for eachz ∈ Hk ∩Wk. SinceF(T ) ⊂ Hk ∩Wk, we have 〈xk+1 − u, Jx − Jxk+1〉�0 for
everyu ∈ F(T ) and henceF(T ) ⊂ Wk+1. Therefore we haveF(T ) ⊂ Hk+1∩Wk+1. This
implies that{xn} is well defined. It follows from the definition ofWn and Proposition2.2
thatxn = PWnx. Usingxn = PWnx and Proposition 2.3, we have

�(xn, x) = �(PWnx, x)��(u, x)− �(u, xn)��(u, x)

for eachu ∈ F(T ) ⊂ Wn for eachn ∈ N∪ {0}. Therefore,�(xn, x) is bounded. Moreover,
from (2.1), we have that{xn} is bounded.

Sincexn+1 = PHn∩Wnx ∈ Wn and Proposition 2.3, we have

�(xn, x)��(xn+1, x)

for eachn ∈ N ∪ {0}. Therefore{�(xn, x)} is nondecreasing. So there exists the limit of
�(xn, x). From Proposition2.3, we have

�(xn+1, xn)= �(xn+1, PWnx)��(xn+1, x)− �(PWnx, x)
= �(xn+1, x)− �(xn, x)
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for eachn ∈ N∪{0}. This implies that limn→∞ �(xn+1, xn) = 0.Sincexn+1 = PHn∩Wnx ∈
Hn, from the definition ofHn, we also have

�(xn+1, yn)��(xn+1, xn)

for eachn ∈ N ∪ {0}. Tendingn → ∞, we have limn→∞ �(xn+1, yn) = 0. Using
Proposition2.1, we obtain

lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = 0.

SinceJ is uniformly norm-to-norm continuous on bounded sets, we have

lim
n→∞ ‖Jxn+1 − Jyn‖ = lim

n→∞ ‖Jxn+1 − Jxn‖ = 0. (3.1)

On the other hand, we have, for eachn ∈ N ∪ {0},
‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (�nJxn + (1− �n)JT xn))‖

= ‖�n(Jxn+1 − Jxn)+ (1− �n)(Jxn+1 − JT xn)‖
= ‖(1− �n)(Jxn+1 − JT xn)− �n(Jxn − Jxn+1)‖
� (1− �n)‖Jxn+1 − JT xn‖ − �n‖Jxn − Jxn+1‖

and hence

‖Jxn+1 − JT xn‖ � 1

1− �n
(‖Jxn+1 − Jyn‖ + �n‖Jxn − Jxn+1‖)

� 1

1− �n
(‖Jxn+1 − Jyn‖ + ‖Jxn − Jxn+1‖).

From (3.1) and lim supn→∞ �n < 1,we obtain

lim
n→∞ ‖Jxn+1 − JT xn‖ = 0.

SinceJ−1 is also uniformly norm-to-norm continuous on bounded sets, we obtain

lim
n→∞ ‖xn+1 − T xn‖ = lim

n→∞ ‖J−1(Jxn+1)− J−1(JT xn)‖ = 0.

From

‖xn − T xn‖ = ‖xn − xn+1 + xn+1 − T xn‖
� ‖xn − xn+1‖ + ‖xn+1 − T xn‖,

we have limn→∞ ‖xn − T xn‖ = 0. Therefore, if{xnk } is a subsequence of{xn} such that
xnk ⇀ x̂ ∈ C, thenx̂ ∈ F̂ (T ) = F(T ).

Finally, we show thatxn → PF(T )x. Let {xnk } be a subsequence of{xn} such that
xnk ⇀ x̂ ∈ F(T ) andw = PF(T )x. For anyn ∈ N, from xn+1 = PHn∩Wnx andw ∈
F(T ) ⊂ Hn ∩Wn, we have�(xn+1, x)��(w, x). On the other hand, from weakly lower
semicontinuity of the norm, we have

�(x̂, x) = ‖x̂‖2 − 2〈x̂, J x〉 + ‖x‖2
� lim inf

k→∞ (‖xnk‖2 − 2〈xnk , Jx〉 + ‖x‖2)
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= lim inf
k→∞ �(xnk , x)

� lim sup
k→∞

�(xnk , x)

� �(w, x).

From the definition ofPF(T )x, we obtainx̂ = w and hence limk→∞ �(xnk , x) = �(w, x).
So, we have

lim
k→∞ ‖xnk‖ = ‖w‖.

Using the Kadec–Klee property ofE, we obtain that{xnk } converges strongly toPF(T )x.
Since{xnk } is an arbitrary weakly convergent sequence of{xn}, we can conclude that{xn}
converges strongly toPF(T )x. �

4. Applications

In this section, we discuss the problem of strong convergence concerning nonexpansive
mappings in a Hilbert space and maximal monotone operators in a Banach space. Using
Theorem3.1, we first obtain the result of [9].

Theorem 4.1(Nakajo and Takahashi[9]).Let C be a nonempty closed convex subset of a
Hilbert space H,and let T be a nonexpansive mapping of C into itself such thatF(T ) is
nonempty.Suppose that{xn} is given by



x0 = x ∈ C,
yn = �nxn + (1− �n)T xn,
Cn = {z ∈ C : ‖z− yn‖�‖z− xn‖},
Qn = {z ∈ C : 〈xn − z, x − xn〉�0},
xn+1 = PCn∩Qnx, n = 0, 1,2, . . . ,

where{�n} ⊂ [0, a) for somea ∈ [0, 1) andPCn∩Qn is the metric projection from C onto
Cn ∩ Qn. Then{xn} converges strongly toPF(T )x, wherePF(T ) is the metric projection
from C ontoF(T ).

Proof. It is sufficient to prove that ifT is nonexpansive, thenT is relatively nonexpansive.
It is obvious thatF(T ) ⊂ F̂ (T ). If u ∈ F̂ (T ), then there exists{xn} ⊂ C such thatxn ⇀ u

andxn − T xn → 0. SinceT is nonexpansive,T is demiclosed. So, we haveu = T u. This
impliesF(T ) = F̂ (T ). Further, in a Hilbert spaceH, we know that

�(x, y) = ‖x − y‖2

for everyx, y ∈ H . So,‖T x−Ty‖�‖x−y‖ is equivalent to�(T x, T y)��(x, y). There-
fore, T is relatively nonexpansive. Using Theorem3.1, we obtain the desired
result. �

Let A be a multivalued operator fromE to E∗ with domainD(A) = {z ∈ E : Az �=
�} and rangeR(A) = ∪{Az : z ∈ D(A)}. An operatorA is said to be monotone if
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〈x1 − x2, y1 − y2〉�0 for eachxi ∈ D(A) andyi ∈ T xi, i = 1,2. A monotone operatorA
is said to bemaximal if its graphG(A) = {(x, y) : y ∈ Ax} is not properly contained in the
graph of any other monotone operator. We know that ifA is a maximal monotone operator,
thenA−10 is closed and convex. The following result is also well-known.

Theorem 4.2(Rockafellar[14]). Let E be a reflexive,strictly convex and smooth
Banach space and let A be a monotone operator from E toE∗. Then A is maximal if
and only ifR(J + rA) = E∗ for all r > 0.

Let E be a reflexive, strictly convex and smooth Banach space, and letA be a maximal
monotone operator fromE toE∗. Using Theorem4.2 and strict convexity ofE, we obtain
that for everyr > 0 andx ∈ E, there exists a uniquexr ∈ D(A) such that

Jx ∈ Jxr + rAxr .
If Jrx = xr , then we can define a single valued mappingJr :E → D(A) by Jr = (J +
rA)−1J and such aJr is called the resolvent ofA. We know thatA−10 = F(Jr) for all
r > 0; see[16,17] for more details. Using Theorem 3.1, we can consider the problem of
strong convergence concerning maximal monotone operators in a Banach space. Such a
problem has been also studied in [7–11,13,15].

Theorem 4.3. Let E be a uniformly convex and uniformly smooth Banach space, let A be
a maximal monotone operator from E toE∗, let Jr be a resolvent of A,wherer > 0 and let
{�n} be a sequence of real numbers such that0��n < 1andlim supn→∞ �n < 1.Suppose
that {xn} is given by



x0 = x ∈ E,
yn = J−1(�nJxn + (1− �n)JJrxn),
Hn = {z ∈ E : �(z, yn)��(z, xn)},
Wn = {z ∈ E : 〈xn − z, Jx − Jxn〉�0},
xn+1 = PHn∩Wnx, n = 0, 1,2, . . . ,

where J is the duality mapping on E.If A−10 is nonempty,then{xn} converges strongly to
PA−10x wherePA−10 is the generalized projection from E ontoA−10.

Proof. We first show that̂F(Jr) ⊂ A−10. Letp ∈ F̂ (Jr ). Then, there exists{zn} ⊂ E such
thatzn ⇀ p and limn→∞(zn − Jrzn) = 0. SinceJ is uniformly norm-to-norm continuous
on bounded sets, we obtain

1

r
(J zn − JJrzn)→ 0.

It follows from 1
r
(J zn − JJrzn) ∈ AJrzn and the monotonicity ofA that

〈w − Jrzn, w∗ − 1
r
(J zn − JJrzn)〉�0

for all w ∈ D(A) andw∗ ∈ Aw. Lettingn→ ∞, we have

〈w − p,w∗〉�0
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for allw ∈ D(A) andw∗ ∈ Aw. Therefore from themaximality ofA, we obtainp ∈ A−10.
On the other hand, we know thatF(Jr) = A−10 andF(Jr) ⊂ F̂ (Jr ), thereforeA−10 =
F(Jr) = F̂ (Jr ). Next we show thatJr is a relatively nonexpansive mapping with respect
toA−10. Letw ∈ E andp ∈ A−10. From the monotonicity ofA, we have

�(p, Jrw) = ‖p‖2 − 2〈p, JJrw〉 + ‖Jrw‖2
= ‖p‖2 + 2〈p, Jw − JJrw − Jw〉 + ‖Jrw‖2
= ‖p‖2 + 2〈p, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2
= ‖p‖2 − 2〈Jrw − p − Jrw, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2
= ‖p‖2 − 2〈Jrw − p, Jw − JJrw〉

+2〈Jrw, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2
= ‖p‖2 − 2r〈Jrw − p, 1

r
(Jw − JJrw)〉

+2〈Jrw, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2
� ‖p‖2 + 2〈Jrw, Jw − JJrw〉 − 2〈p, Jw〉 + ‖Jrw‖2
= ‖p‖2 − 2〈p, Jw〉 + ‖w‖2 − ‖Jrw‖2 + 2〈Jrw, Jw〉 − ‖w‖2
= �(p,w)− �(Jrw,w)
� �(p,w).

This implies thatJr is a relatively nonexpansive mapping. Using Theorem3.1, we can
conclude that{xn} converges strongly toPA−10x. �
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